122 research outputs found

    A coupled ETAS-I2GMM point process with applications to seismic fault detection

    Get PDF
    Epidemic-type aftershock sequence (ETAS) point process is a common model for the occurrence of earthquake events. The ETAS model consists of a stationary background Poisson process modeling spontaneous earthquakes and a triggering kernel representing the space–time-magnitude distribution of aftershocks. Popular nonparametric methods for estimation of the background intensity include histograms and kernel density estimators. While these methods are able to capture local spatial heterogeneity in the intensity of spontaneous events, they do not capture well patterns resulting from fault line structure over larger spatial scales. Here we propose a two-layer infinite Gaussian mixture model for clustering of earthquake events into fault-like groups over intermediate spatial scales. We introduce a Monte Carlo expectation-maximization (EM) algorithm for joint inference of the ETAS-I2GMM model and then apply the model to the Southern California Earthquake Catalog. We illustrate the advantages of the ETAS-I2GMM model in terms of both goodness of fit of the intensity and recovery of fault line clusters in the Community Fault Model 3.0 from earthquake occurrence data

    WEATHER EFFECTS ON CONSUMER VARIETY-SEEKING

    Get PDF
    With the increasing prevalence of online businesses and social networking services, a huge volume of data about transaction records and social connections between users is accumulated at an unprecedented speed, which enables us to take advantage of electronic word-of-mouth effect embedded in social networks for precision marketing and social recommendations. Different from existing works on social recommendations, our research focuses on discriminating the community-level social influence of different friend groups to enhance the quality of recommendation. To this end, we propose a novel probabilistic topic model integrating community detection with topic discovery to model user behaviors. Based on this model, a recommendation method taking both individual interests and conformity influence into consideration is developed. To evaluate the performance of the proposed model and method, experiments are conducted on two real recommendation applications, and the results demonstrate that the proposed recommendation method exhibits superior performance compared with the state-of-art recommendation methods, and the proposed topic model exhibits good explainablibity of topic semantics and community interests. Furthermore, as some people are more individual interest oriented and some are more conformity oriented demonstrated by the experiments, we explore factors that influence each individual’s conformity tendency, and obtain some meaningful findings

    Typical entanglement entropy in systems with particle-number conservation

    Full text link
    We calculate the typical bipartite entanglement entropy ⟨SA⟩N\langle S_A\rangle_N in systems containing indistinguishable particles of any kind as a function of the total particle number NN, the volume VV, and the subsystem fraction f=VA/Vf=V_A/V, where VAV_A is the volume of the subsystem. We expand our result as a power series ⟨SA⟩N=afV+bV+c+o(1)\langle S_A\rangle_N=a f V+b\sqrt{V}+c+o(1), and find that cc is universal (i.e., independent of the system type), while aa and bb can be obtained from a generating function characterizing the local Hilbert space dimension. We illustrate the generality of our findings by studying a wide range of different systems, e.g., bosons, fermions, spins, and mixtures thereof. We provide evidence that our analytical results describe the entanglement entropy of highly excited eigenstates of quantum-chaotic spin and boson systems, which is distinct from that of integrable counterparts.Comment: 22+6 pages, 8+1 figure

    Model predictive control strategy in waked wind farms for optimal fatigue loads

    Full text link
    With the rapid growth of wind power penetration, wind farms (WFs) are required to implement frequency regulation that active power control to track a given power reference. Due to the wake interaction of the wind turbines (WTs), there is more than one solution to distributing power reference among the operating WTs, which can be exploited as an optimization problem for the second goal, such as fatigue load alleviation. In this paper, a closed-loop model predictive controller is developed that minimizes the wind farm tracking errors, the dynamical fatigue load, and and the load equalization. The controller is evaluated in a mediumfidelity model. A 64 WTs simulation case study is used to demonstrate the control performance for different penalty factor settings. The results indicated the WF can alleviate dynamical fatigue load and have no significant impact on power tracking. However, the uneven load distribution in the wind turbine system poses challenges for maintenance. By adding a trade-off between the load equalization and dynamical fatigue load, the load differences between WTs are significantly reduced, while the dynamical fatigue load slightly increases when selecting a proper penalty factor.Comment: Accepted by Electric Power Systems Researc

    Machine Learning Techniques for Classifying the Mutagenic Origins of Point Mutations

    Get PDF
    There is increasing interest in developing diagnostics that discriminate individual mutagenic mechanisms in a range of applications that include identifying population-specific mutagenesis and resolving distinct mutation signatures in cancer samples. Analyses for these applications assume that mutagenic mechanisms have a distinct relationship with neighboring bases that allows them to be distinguished. Direct support for this assumption is limited to a small number of simple cases, e.g., CpG hypermutability. We have evaluated whether the mechanistic origin of a point mutation can be resolved using only sequence context for a more complicated case. We contrasted single nucleotide variants originating from the multitude of mutagenic processes that normally operate in the mouse germline with those induced by the potent mutagen N-ethyl-N-nitrosourea (ENU). The considerable overlap in the mutation spectra of these two samples make this a challenging problem. Employing a new, robust log-linear modeling method, we demonstrate that neighboring bases contain information regarding point mutation direction that differs between the ENU-induced and spontaneous mutation variant classes. A logistic regression classifier exhibited strong performance at discriminating between the different mutation classes. Concordance between the feature set of the best classifier and information content analyses suggest our results can be generalized to other mutation classification problems. We conclude that machine learning can be used to build a practical classification tool to identify the mutation mechanism for individual genetic variants. Software implementing our approach is freely available under an open-source license

    MINER: Improving Out-of-Vocabulary Named Entity Recognition from an Information Theoretic Perspective

    Full text link
    NER model has achieved promising performance on standard NER benchmarks. However, recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary (OOV) entity recognition. In this work, we propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective. The proposed approach contains two mutual information-based training objectives: i) generalizing information maximization, which enhances representation via deep understanding of context and entity surface forms; ii) superfluous information minimization, which discourages representation from rote memorizing entity names or exploiting biased cues in data. Experiments on various settings and datasets demonstrate that it achieves better performance in predicting OOV entities

    Temperature-based Collision Detection in Extreme Low Light Condition with Bio-inspired LGMD Neural Network

    Get PDF
    It is an enormous challenge for intelligent vehicles to avoid collision accidents at night because of the extremely poor light conditions. Thermal cameras can capture temperature map at night, even with no light sources and are ideal for collision detection in darkness. However, how to extract collision cues efficiently and effectively from the captured temperature map with limited computing resources is still a key issue to be solved. Recently, a bio-inspired neural network LGMD has been proposed for collision detection successfully, but for daytime and visible light. Whether it can be used for temperature-based collision detection or not remains unknown. In this study, we proposed an improved LGMD-based visual neural network for temperature-based collision detection at extreme light conditions. We show in this study that the insect inspired visual neural network can pick up the expanding temperature differences of approaching objects as long as the temperature difference against its background can be captured by a thermal sensor. Our results demonstrated that the proposed LGMD neural network can detect collisions swiftly based on the thermal modality in darkness; therefore, it can be a critical collision detection algorithm for autonomous vehicles driving at night to avoid fatal collisions with humans, animals, or other vehicles
    • …
    corecore